## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## (1S,3R)-3-Ammoniocyclohexanecarboxylate

Yu Hu, ${ }^{\text {a* }}$ XiaoXia Sun, ${ }^{\text {b }}$ Ying Guo ${ }^{\text {a }}$ and Xun Tuo ${ }^{\text {a }}$

${ }^{\text {a Experimental Chemistry Center, Nanchang University, Nanchang 330031, People's }}$ Republic of China, and ${ }^{\text {b }}$ Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China Correspondence e-mail: huyu@ncu.edu.cn

Received 25 August 2008; accepted 3 September 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; $R$ factor $=0.038 ; w R$ factor $=0.093$; data-to-parameter ratio $=12.0$.

The title $\gamma$-aminobutyric acid, $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$, exists as a zwitterion. The crystal structure is stabilized by a network of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a twodimensional bilayer. An intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is also observed.

## Related literature

For related literature, see: Allan et al. (1981); Ávila et al. (2004); Fábián et al. (2005); Granja (2004); Hu et al. (2006); Schousboe (2000).


## Experimental

## Crystal data

$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$
$M_{r}=143.18$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=5.5130(10) \AA$
$b=6.1282(9) \AA$
$c=22.518$ (4) $\AA$
$V=760.8(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.48 \times 0.38 \times 0.30 \mathrm{~mm}$

## Data collection

Bruker SMART 1K area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.958, T_{\text {max }}=0.973$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 92$ parameters
$w R\left(F^{2}\right)=0.093 \quad$ H-atom parameters constrained
$S=0.97$
1107 reflections

1150 measured reflections 1107 independent reflections 891 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :---: | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 1^{\mathrm{i}}$ | 0.89 | 1.84 | $2.725(2)$ | 172 |
| $\mathrm{~N} 1-\mathrm{H} 1 D \cdots 2^{\mathrm{ii}}$ | 0.89 | 2.00 | $2.849(2)$ | 160 |
| $\mathrm{~N} 1-\mathrm{H} 1 E \cdots \mathrm{O}^{\mathrm{iii}}$ | 0.89 | 1.89 | $2.772(2)$ | 170 |
| $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{iv}}$ | 0.98 | 2.55 | $3.472(2)$ | 156 |
| Symmetry codes: (i) | $x, y+1, z ;$ | (ii) | $x-1, y+1, z ;$ | (iii) $x-\frac{1}{2},-y+\frac{1}{2},-z ;$ |
| $x-1, y, z$. |  |  |  |  |

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Science Fund of the Education Office of Jiangxi, China [(2007)279].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2278).

## References

Allan, R. D., Johnston, G. A. R. \& Twitchin, B. (1981). Aust. J. Chem. 34, 22312236.

Ávila, E. E., Mora, A. J., Delgado, G. E., Ramírez, B. M., Bahsas, A. \& Koteich, S. (2004). Acta Cryst. C60, 0759-o761.

Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.
Fábián, L., Kálmán, A., Argay, G., Bernáth, G. \& Gyarmati, Z. Cs. (2005). Cryst. Growth Des. 5, 773-782.
Granja, J. R. (2004). Intl Patent WO 2004052916.
Hu, Y., Yu, S. L., Yang, Y. J., Zhu, J. \& Deng, J. G. (2006). Chin. J. Chem. 24, 795-799.
Schousboe, A. (2000). Neurochem. Res. 25, 1241-1244.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supplementary materials

Acta Cryst. (2008). E64, o1912 [ doi:10.1107/S1600536808028080]
(1S,3R)-3-Ammoniocyclohexanecarboxylate

Y. Hu, X. X. Sun, Y. Guo and X. Tuo

## Comment

The importance of the inhibitory neurotransmitter, $\gamma$-aminobutyric acid (GABA), in certain neurological and psychiatric disorders has become generally accepted (Schousboe et al., 2000). As an analogue of GABA, 3-aminocyclohexanecarboxylic acid has been investigated in structure-activity studies of conformationally restricted analogues (Allan et al., 1981). From another point of view, self-assembling peptide nanotubes, which contain 3-aminocyclohexanecarboxylic acid, have structural and functional properties that may be suitable for various applications in biology and material science (Granja, 2004). The structure of $1 S, 3 R$-3-aminocyclohexanecarboxylic acid was elucidated by spectroscopic analysis. Here we report its crystal structure.

The X-ray crystallographic study confirms the molecular structure previously proposed on the basis of spectroscopic data. The title compound exists as a zwitterion, containing an ammonium group and a carboxylate group (Fig. 1) and amino acid units are linked, in a head-to-tail fashion, by hydrogen bonds (Fig. 2 and Table 1); this is very often observed in the crystal structures of amino acids (Ávila et al., 2004; Fábián et al., 2005). The hydrogen bonds result in a two-dimensional bilayer structure parallel to the $b c$ plane (Fig. 3).

## Experimental

1S,3R-3-amino-cyclohexanecarboxylic acid was synthesized and resolved from 3-cyclohexenecarboxylic acid (Hu et al., 2006). Its identity was confirmed by NMR and HRMS. ${ }^{1} \mathrm{H}$ NMR in $\mathrm{D}_{2} \mathrm{O}(300 \mathrm{MHz}): 3.19-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.28(\mathrm{~m}$, 2H), 1.89-2.03 (m, 3H), 1.27-1.50 (m, 4H). ${ }^{13} \mathrm{C}$ NMR in $\mathrm{D}_{2} \mathrm{O}$ ( 75 MHz ): 183.96, 49.91, 45.02, 33.55, 29.89, 28.48, 23.30 HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{2}$ 142.0863, found 142.0859. Single crystals suitable for X-ray diffraction analysis were obtained by the slow diffusion of acetone into an aqueous solution of the title compound.

## Refinement

Carbon-bound H atoms were positioned geometrically and were treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.97-0.98 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2$ times $U_{\text {eq }}$ of the parent atom. H atoms attached to N1 were located in difference Fourier maps and refined initially with distance restraints of $0.89 \AA$. They were then repositioned geometrically and refined as riding, with $\mathrm{N}-\mathrm{H}=0.89 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.5$ times $U_{\text {eq }}(\mathrm{N})$. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures


Fig. 1. A view of the molecular structure of the title compound, with anisotropic displacement parameters drawn at the $50 \%$ probability level. H atoms are represented by spheres of arbitrary radius.


Fig. 2. A view of the hydrogen-bonded molecular strands (dashed lines). The strands are aligned parallel to the crystallographic $b$ axis. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes: $\left(^{*}\right) x-1,1+y, z ;\left(^{* *}\right) x, y-1, z ;(\#) x, 1+y, z ;(\# \#)$ $2+x, y-1, z ;(\$) x-1 / 2,1 / 2-y,-z ;(\$ \$) 1 / 2+x, 1 / 2-y,-z$

Fig. 3. A crystal packing diagram, viewed down the $a$ axis, showing the layer architecture.

## (1S,3R)-3-Ammoniocyclohexanecarboxylate

## Crystal data

$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$
$F_{000}=312$
$M_{r}=143.18$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=5.5130(10) \AA$
$b=6.1282(9) \AA$
$c=22.518(4) \AA$
$V=760.8(2) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.250 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K $\alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 31 reflections
$\theta=4.9-13.6^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.48 \times 0.38 \times 0.30 \mathrm{~mm}$

## Data collection

Bruker SMART 1K area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
1107 independent reflections
891 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.013$
$\theta_{\text {max }}=28.0^{\circ}$
$\theta_{\text {min }}=1.8^{\circ}$
$h=0 \rightarrow 7$
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.958, T_{\text {max }}=0.973$
1150 measured reflections

$$
\begin{aligned}
& k=0 \rightarrow 8 \\
& l=-1 \rightarrow 29
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.093$
$S=0.97$
1107 reflections
92 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.057 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.20$ e $\AA^{-3}$
Extinction correction: none

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| C1 | $0.2478(4)$ | $0.3817(3)$ | $0.08035(7)$ | $0.0282(4)$ |
| H1A | 0.3925 | 0.4696 | 0.0750 | $0.034^{*}$ |
| H1B | 0.2011 | 0.3237 | 0.0419 | $0.034^{*}$ |
| C2 | $0.0440(3)$ | $0.5232(3)$ | $0.10484(8)$ | $0.0262(4)$ |
| H2 | -0.1034 | 0.4346 | 0.1077 | $0.031^{*}$ |
| C3 | $0.1066(4)$ | $0.6102(3)$ | $0.16649(8)$ | $0.0339(5)$ |
| H3A | 0.2466 | 0.7055 | 0.1639 | $0.041^{*}$ |
| H3B | -0.0285 | 0.6946 | 0.1818 | $0.041^{*}$ |
| C4 | $0.1614(4)$ | $0.4219(3)$ | $0.20854(8)$ | $0.0369(5)$ |
| H4A | 0.2069 | 0.4796 | 0.2471 | $0.044^{*}$ |
| H4B | 0.0166 | 0.3340 | 0.2137 | $0.044^{*}$ |
| C5 | $0.3656(4)$ | $0.2795(3)$ | $0.18478(8)$ | $0.0347(5)$ |
| H5A | 0.3926 | 0.1580 | 0.2116 | $0.042^{*}$ |
| H5B | 0.5141 | 0.3641 | 0.1827 | $0.042^{*}$ |
| C6 | $0.3023(3)$ | $0.1930(3)$ | $0.12313(7)$ | $0.0265(4)$ |


| H6 | 0.1526 | 0.1080 | 0.1271 | $0.032^{*}$ |
| :--- | :--- | :--- | :--- | :--- |
| C7 | $0.4929(3)$ | $0.0418(3)$ | $0.09604(9)$ | $0.0303(4)$ |
| N1 | $-0.0035(3)$ | $0.7099(2)$ | $0.06373(6)$ | $0.0293(4)$ |
| H1C | 0.1290 | 0.7923 | 0.0610 | $0.044^{*}$ |
| H1D | -0.1256 | 0.7897 | 0.0778 | $0.044^{*}$ |
| H1E | -0.0422 | 0.6588 | 0.0280 | $0.044^{*}$ |
| O1 | $0.4251(3)$ | $-0.0725(2)$ | $0.05224(6)$ | $0.0405(4)$ |
| O2 | $0.6983(3)$ | $0.0343(3)$ | $0.11737(8)$ | $0.0611(6)$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C1 | $0.0320(10)$ | $0.0277(9)$ | $0.0249(8)$ | $0.0087(9)$ | $0.0012(7)$ | $-0.0031(7)$ |
| C2 | $0.0268(9)$ | $0.0234(8)$ | $0.0285(8)$ | $0.0039(8)$ | $0.0018(8)$ | $-0.0017(7)$ |
| C3 | $0.0454(12)$ | $0.0292(9)$ | $0.0271(9)$ | $0.0112(10)$ | $0.0044(9)$ | $-0.0050(8)$ |
| C4 | $0.0503(12)$ | $0.0357(10)$ | $0.0247(8)$ | $0.0060(11)$ | $0.0034(9)$ | $-0.0002(9)$ |
| C5 | $0.0402(11)$ | $0.0347(10)$ | $0.0291(9)$ | $0.0074(10)$ | $-0.0035(9)$ | $0.0004(9)$ |
| C6 | $0.0239(9)$ | $0.0228(8)$ | $0.0329(9)$ | $0.0036(8)$ | $0.0014(8)$ | $-0.0014(8)$ |
| C7 | $0.0300(9)$ | $0.0212(8)$ | $0.0397(10)$ | $0.0031(9)$ | $0.0059(9)$ | $0.0012(9)$ |
| N1 | $0.0322(8)$ | $0.0287(7)$ | $0.0271(7)$ | $0.0101(8)$ | $-0.0014(7)$ | $-0.0030(7)$ |
| O1 | $0.0442(8)$ | $0.0393(8)$ | $0.0379(8)$ | $0.0026(8)$ | $0.0110(6)$ | $-0.0114(7)$ |
| O2 | $0.0320(8)$ | $0.0617(11)$ | $0.0896(13)$ | $0.0192(9)$ | $-0.0095(8)$ | $-0.0294(11)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{C} 1-\mathrm{C} 2$ | $1.523(2)$ |
| :--- | :--- |
| $\mathrm{C} 1-\mathrm{C} 6$ | $1.535(2)$ |
| $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 0.9700 |
| $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 0.9700 |
| $\mathrm{C} 2-\mathrm{N} 1$ | $1.495(2)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.527(2)$ |
| C2-H2 | 0.9800 |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.523(3)$ |
| $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 0.9700 |
| $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 0.9700 |
| $\mathrm{C} 4-\mathrm{C} 5$ | $1.522(3)$ |
| $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 0.9700 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$ | $110.26(14)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 109.6 |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 109.6 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.6 |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.6 |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 108.1 |
| N1-C2-C1 | $109.94(14)$ |
| N1-C2-C3 | $109.61(14)$ |
| C1-C2-C3 | $111.20(15)$ |
| N1-C2-H2 | 108.7 |
| C1-C2-H2 | 108.7 |


| C4-H4B | 0.9700 |
| :--- | :--- |
| C5-C6 | $1.526(2)$ |
| C5-H5A | 0.9700 |
| C5-H5B | 0.9700 |
| C6-C7 | $1.528(2)$ |
| C6-H6 | 0.9800 |
| C7-O2 | $1.231(2)$ |
| C7-O1 | $1.266(2)$ |
| N1-H1C | 0.8900 |
| N1-H1D | 0.8900 |
| N1-H1E | 0.8900 |
|  |  |
| H4A-C4-H4B | 108.0 |
| C4-C5-C6 | $110.48(16)$ |
| C4-C5-H5A | 109.6 |
| C6-C5-H5A | 109.6 |
| C4-C5-H5B | 109.6 |
| C6-C5-H5B | 109.6 |
| H5A-C5-H5B | 108.1 |
| C5-C6-C7 | $114.62(15)$ |
| C5-C6-C1 | $110.72(15)$ |
| C7-C6-C1 | $109.93(14)$ |
| C5-C6-H6 | 107.1 |

## sup-4

## supplementary materials

| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$ | 108.7 | $\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$ | 107.1 |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | $110.22(15)$ | $\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$ | 107.1 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 109.6 | $\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$ | $123.73(19)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 109.6 | $\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 6$ | $119.95(18)$ |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 109.6 | $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$ | $116.32(17)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 109.6 | $\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$ | 109.5 |
| $\mathrm{H} 3 A-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 108.1 | $\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{D}$ | 109.5 |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $111.27(15)$ | $\mathrm{H} 1 \mathrm{C}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{D}$ | 109.5 |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 109.4 | $\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{E}$ | 109.5 |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 109.4 | $\mathrm{H} 1 \mathrm{C}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{E}$ | 109.5 |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 109.4 | $\mathrm{H} 1 \mathrm{D}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{E}$ | 109.5 |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$ | 109.4 |  |  |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 1^{\mathrm{i}}$ | 0.89 | 1.84 | $2.725(2)$ | 172 |
| $\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{D} \cdots \mathrm{O} 2^{\mathrm{ii}}$ | 0.89 | 2.00 | $2.849(2)$ | 160 |
| $\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{E} \cdots \mathrm{O}^{\mathrm{iii}}$ | 0.89 | 1.89 | $2.772(2)$ | 170 |
| $\mathrm{C} 6-\mathrm{H} 6 \cdots 2^{\mathrm{iv}}$ | 0.98 | 2.55 | $3.472(2)$ | 156 |

Symmetry codes: (i) $x, y+1, z$; (ii) $x-1, y+1, z$; (iii) $x-1 / 2,-y+1 / 2,-z$; (iv) $x-1, y, z$.

## supplementary materials

Fig. 1


Fig. 2


## supplementary materials

Fig. 3


